RESEARCH
📚 Representative Works
* Staying the mouse over the screen stops the movement
📝 Publications
Last updated : 2023/03/12
Choi, H., Park, S., Kang, Y., Im, J., & Song, S. (2023). Retrieval of hourly PM2. 5 using top-of-atmosphere reflectance from geostationary ocean color imagers I and II. Environmental Pollution, 121169.
Kim, Y., Kang, E., Cho, D., Lee, S., & Im, J.. (2022). Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation. Journal of the Korean Association of Geographic Information Studies, 25(3), 74-99.
Park, S., Im, J., Kim J., & Kim, S.M. (2022). Geostationary satellite-derived ground-level particulate matter concentrations using real-time machine learning in Northeast Asia. Environmental Pollution, v.306, 119425.
Lee, S., Park, S., Lee, M. I., Kim, G., Im, J., & Song, C. K. (2022). Air Quality Forecasts Improved by Combining Data Assimilation and Machine Learning with Satellite AOD. Geophysical Research Letters, 49(1), e2021GL096066.
Kang, Y., Kim, M., Kang, E., Cho, D., & Im, J. (2022). Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia. ISPRS Journal of Photogrammetry and Remote Sensing, 183, 253-268.
Park, S., Kim, M., Im, J. (2021). Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data. Korean Journal of Remote Sensing, 37(2), 321-335.
Choi, H., Kang, Y., & Im, J. (2021). Estimation of TROPOMI-derived Ground-level SO2 Concentration Using Machine Learning Over East Asia. Korean Journal of Remote Sensing, 37(2), 275-290.
Kang, E., Yoo, C., Shin, Y., Cho, D., & Im, J. (2021). Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea. Korean Journal of Remote Sensing, v.37, no.6-1, pp.1739-1756.
Kang, Y., Choi, H., Im, J., Park, S., Shin, M., Song, C.K., & Kim, S. (2021). Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia. Environmental Pollution, 288, 117711.
Choi, H., Kang, Y., Im, J., Shin, M., Park, S., & Kim, S. M. (2020). Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models. Korean Journal of Remote Sensing, 36(5_3), 1053-1066.
Park, S., Lee, J., Im, J., Song, C. K., Choi, M., Kim, J., ... & Lee, D. W. (2020). Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models. Science of The Total Environment, 713, 136516.
Shin, M., Kang, Y., Park, S., Im, J., Yoo, C., & Quackenbush, L. J. (2020). Estimating ground-level particulate matter concentrations using satellite-based data: a review. GIScience & Remote Sensing, 57(2), 174-189.
Park, S., Shin, M., Im, J., Song, C. K., Choi, M., Kim, J., ... & Kim, S. K. (2019). Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea. ACP, 19(2), 1097-1113.